

Using Sentiment Analysis and Pattern Matching to

Signal User Review Abnormalities

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Stefan S. Gloutnikov

May 2018

© 2018

Stefan S. Gloutnikov

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Using Sentiment Analysis and Pattern Matching to Signal User Review Abnormalities

By

Stefan S. Gloutnikov

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2018

Dr. Robert Chun

Department of Computer Science

Dr. Jon Pearce

Department of Computer Science

Mr. Stanislav Georgiev

Principal Information Architect, Salesforce.com

Abstract

User opinions on websites like Amazon, Yelp, and TripAdvisor are a key input for

consumers when figuring out what to purchase, or where and what to eat. This means

that in order for such websites to provide a better service to their customers, they must

guard against fake and targeted reviews. Detecting such users and reviews

automatically is a very complex multi-step process, and there is no direct mechanism

for solving the problem reliably. Multiple AI and Machine Learning algorithms are

coupled together when examining user reviews in determining if a review is fake or

not. In this project we propose one such mechanism, which examines past user reviews

to detect abnormalities, if any, signaling that they should be looked at more thoroughly

from more dimensions. We do so by combining existing sentiment analysis techniques

and pattern matching. In order to gain more insight into a review, we break it down

into sentences and produce a sentiment value for each one, allowing us to represent a

review as a sentiment vector. The sentiment vector then allows us to match various

sized tuples against other reviews from the user and compute abnormality scores.

Acknowledgments

I would like to express my deepest gratitude to Dr. Robert Chun for agreeing to be my

advisor again after my hiatus, and for his continued guidance. In addition, thank you

also to Dr. Jon Pearce for his suggestions and support, and Stanislav Georgiev for

working extremely closely with me throughout this project, without whom it would not

have been possible. I would also like to thank my friends Alina, Deian, and Yelena for

their continuous encouragements. Last but not least, I would like to thank my family for

their endless support and love.

Table of Contents
1. Introduction .. 1

2. Related Work .. 3

3. Sentiment Analysis .. 8

3.1. Background .. 10

3.2. Sentiment .. 12

3.3. Problem and Characteristics .. 14

3.4. Applications ... 18

3.5. Previous Research ... 20

3.5.1. Naïve Bayes Classifier ... 21

3.5.2. Recursive Neural Models.. 27

3. Dataset and Overview ... 34

3.1. Preprocessing ... 35

3.2. System Overview .. 35

4. Sentiment Vectors and Tuples ... 36

4.1. Defining Abnormality .. 37

4.2. Abnormality Score .. 39

5. Implementation .. 39

6. Results .. 42

7. Conclusion and Future Work ... 47

References ... 50

Appendix: Source Code .. 52

List of Figures

Figure 1. Statement and analysis example. .. 9

Figure 2. Google Trends for the term ‘sentiment analysis’. ... 11

Figure 3. Classification workflow. ... 15

Figure 4. Levels of analysis. .. 16

Figure 5. A “bag-of-words” assumption for Naïve Bayes Classifier. Word position is

ignored, and a frequency of each word is stored. ... 22

Figure 6. Example of a phrase inside the Sentiment Treebank. .. 29

Figure 7. Structure of a RNTN. .. 30

Figure 8. Parse tree of a sentence produced by a RNTN. ... 32

Figure 9. Remaining two possible parse trees for the input sentence. 33

Figure 10. Schema representation of the Yelp Dataset. .. 35

Figure 11. Results for the user abnormality score distribution. .. 43

Figure 12. Results for the top abnormality scored users match between the CoreNLP

and Naïve Bayes methods. ... 44

Figure 13. Statistical distribution of the top matching users between CoreNLP and

Naïve Bayes. .. 48

List of Tables

Table 1. Training and predict data for Naïve Bayes Classifier. ... 25

Table 2. Naïve Bayes word count of positive class. .. 25

Table 3. CoreNLP sentiment scoring. .. 34

Table 4. Working dataset size. .. 35

Table 5. Example of a reappearing highly scored sentiment tuple’s sentence and

sentiment classification. .. 47

1

1. Introduction

Since more and more people have been turning to user reviews when deciding on their

consumer choices, there has also been a push by marketing agencies or owners to

promote certain products and restaurants. A strategic and powerful way to game the

system is to insert fake reviews by fake users. To a normal user looking at the popular

restaurant, he sees hundreds or thousands of happy customers and is more likely to

also give it a try. Websites like Yelp and Amazon need to identify and eliminate these

fake reviews, if they want their customers to receive a satisfactory result and return to

their platform again in the future.

As fake review bot makers improve, so should the detection methods, and it turns into

a “cat and mouse” game between fake review generators and detectors. In a recent

article discussing a new Yelp AI review generator from researchers from the University

of Chicago, it was determined that AI-generated reviews were “effectively

indistinguishable” from the genuine ones and were given a “usefulness” rating of 3.15

by human evaluators, compared to 3.28 for genuine reviews [4]. In response, Yelp

stated that they didn’t believe such reviews would pose a problem as they have internal

methods for spotting fake reviews, and that they use many signals when determining if

a review is legit and whether or not to approve it.

2

Due to the increasing complexity of detecting fake reviews, the detection systems rely

on many signals when determining if something looks abnormal. Machine learning and

AI algorithms combine together looking at the review text, user location, physical user

location (IP address), history, and many more factors in determining if a review belongs

to a real person.

In this project, we develop one such signal, which can be used as input into a more

complex detection system, when identifying abnormal user activity. To do so, we break

down every review into sentences, and perform sentiment analysis on each of these

sentences. Modern sentiment analysis techniques (Recursive Neural Tensor Networks)

and tools (CoreNLP) were used when scoring each sentence. The sentiment analysis

scores of each sentence gives us an insight into the structure of the review, and we can

use that to deduce if a user produces a certain pattern in his or her reviews.

From each of the scored sentences, we produce a sentiment vector that is used to

generate all possible sentiment tuples for that review. Having all possible tuples, we

match for patterns that maybe reoccur often in the user’s reviews. If a user constantly

exhibits certain patterns in the reviews he or she leaves, we signal that there is

something abnormal.

3

2. Related Work

Detecting fake and suspicious user reviews has been a growing area of research, as

online services and web stores have been rapidly growing. This has led to the increased

importance of only displaying real and objective opinions online. Advances in natural

language processing, machine learning, and AI have produced multiple techniques

used to identify such fake, deceptive, or spam reviews. We outline some of these works,

and build upon them to propose a unique and novel approach to detecting abnormal

user reviews.

Around 10 years ago the paper titled Review Spam Detection, by Jindal and Liu [12] was

the first to present the problem of detecting spam user reviews. The authors paved the

first footsteps for studying review spam and spam detection. They identified that a

large number duplicate, and near-duplicate reviews were written by the same or

different reviewers for different products. The proposed approach was based on

duplicate detection through the use of the shingle method and a 2-class classification

(spam/not-spam) machine learning logistic regression predictive model. Later in Finding

Unusual Review Patterns Using Unexpected Rules, Jindal, Liu, and Lim [10] identify

unusual review patterns, which they define as suspicious behaviors, and formulate the

problem as finding unexpected rules. To decide what is expected and unexpected, the

authors define several types of expectations based on the natural distribution of the

4

data. The statistical methods used means that the proposed model is domain

independent as it only depends on the data and the types of rules, but not the

application [10].

In [11], the authors used linguistic features and behavioral features in an attempt to

recognize what Yelp is doing in their existing secret spam detection methods. Both

methods showed high detection accuracy of their crowdsourced fake reviews, but they

concluded that Yelp’s algorithms most likely used a behavioral based approach for

detecting fake reviews. The following behavioral dimensions were used when

examining a user’s set of reviews: maximum number of reviews—writing a large

amount of reviews in a day is abnormal; percentage of positive reviews—a majority of

spammers had more than 80% of their reviews as four or five stars, while normal users

showed a more even distribution; review length—a majority of spammers used 135

words or less, while a majority of normal users used more than 200 words; reviewer

deviation—since spamming is analogous to incorrect projection, fake reviews are more

likely to deviate from the general rating consensus; maximum content similarity—

examine whether reviews are similar to other existing reviews [11]. The authors in [15]

explore generalized approaches for identifying fake reviews by capturing the

differences of language between misleading and truthful reviews. They construct and

present a cross-domain gold-standard dataset, which they use to extend the SAGE

5

Model—a Bayesian generative approach [21]. The findings showed that spammers are

more likely to exaggerate their opinions, and are more likely to use strongly

opinionated vocabulary.

In [14], the authors detect fake reviews written by the same person using multiple

names, by looking at the semantic similarity between words. They argue that the key to

catching fake reviews can be found in the review text, because spammers have a limited

imagination when it comes down to writing completely new details in every review.

Fake reviews are more prone to rephrasing or switching words with their synonyms,

and is why they look at synonym relations between words. Simple cosine similarity and

variants of cosine similarity are proposed in measuring the results [14]. Another method

for identifying the same author among different user names is proposed in [17], by

looking at writing styles and other linguistic clues. The authors argued that cosine

similarity did not perform well on their dataset and proposed a new method by

creating their own binary classifier. The core of the method is based on supervised

learning, which learns in a similarity space rather than the document space [17]. Both

[16] and [19] also employ their own machine learning methods for identifying and

classifying spam reviews. Three different types of ways to look at reviews are proposed

in [16]: Untruthful opinions—reviews that mislead readers on purpose by giving

undeserving positive or negative reviews. Reviews based on brands only—these are

6

reviews that do not comment on the products, but only the brands, manufacturers or

sellers. Non-reviews—reviews that are not really reviews, but are there to advertise a

different product or ask a question.

A different way to spot fake reviews, by identifying groups is presented in [13], where

the authors study spam detection in the collaborative setting, by discovering fake

reviewer groups. Although identifying and labeling a review or reviewer as fake is

hard, this study suggests that labeling reviewer groups is much easier, and propose a

supervised machine learning approach to do so. Most of the previously shown

publications which use machine learning techniques are highly dependent on domain

specific labeled data in order to perform well. FraudEagle, presented in [20], is a fast and

effective framework for detecting fraudsters and fake reviews, that works in a

completely unsupervised fashion, requires no labeled data, and is generalizable. It

exploits the network effect among reviewers and products, unlike other methods that

focus on review texts or behavioral analysis. Finally, it is able to give a fraud score to

each review and user, and is capable of scaling to large datasets due to its nature to

grow linearly with the network size. [20]

7

Sentiment Analysis

Up until recently, the field of sentiment analysis had not been used for detecting fake

and spam reviews. The paper Detecting Spam Reviews through Sentiment Analysis, by

Peng and Zhong, was published in late 2014 and was the first to make this step. The

sentiment score and star rating relationship is used as a discriminative rule—a review

with a high star rating, but with text that did not reflect the high score (and vice versa),

would be flagged as potentially fake. A time series combined with more discriminative

rules are used at the end to detect and classify reviews as spam [18].

Although not directly in the domain of detecting fake reviews, sentiment analysis was

used very recently with user reviews in [22], for identifying restaurant features in Yelp

reviews. The authors used sentiment analysis and the Yelp dataset to answer questions

like: What makes a good restaurant? What are the major concerns of customers for a

great meal?

Proposed Methods

Building on some of the ideas discussed above, we propose a unique and novel

approach for identifying and scoring potentially fake reviews and users. Using a

combination of existing sentiment analysis techniques, pattern matching, and

statistically derived rules, we score how likely a user is a fraudster. To the best of our

8

knowledge, sentiment analysis has never been used before for identifying the structure

of a review, which gives us the ability to detect reoccurring patterns and abnormalities.

As AI fake review bots evolve, they must still obey by some underlying logic and rules.

Knowing and comparing the sentiment of each sentences gives us a look into how each

review is structured. Like in [20] and [10], our methods are also domain independent,

and do not necessarily depend on an existing dataset.

3. Sentiment Analysis

Sentiment analysis is a relatively new field of research that has bloomed rapidly since

the 2000’s, in most part under the umbrella of the Natural Language Processing (NLP)

field. Sometimes referred to as opinion mining, the field of sentiment analysis is the

study of analyzing people’s opinions, emotions, or attitudes towards a certain subject,

topic or event. The terms sentiment analysis and opinion mining can be used

interchangeably, with the first most often used in industry, whereas both terms appear

in academia to express the same matter.

The desired outcome of sentiment analysis is to be able to produce automated methods

for identifying and extracting said sentiment from a written text, plus be able to classify

it as accurately as possible. When we say to classify the sentiment extracted from

written text, we mean being able to imply whether it holds positive, negative, or neutral

9

sentiment. In the case of positive and negative sentiment, we can go a little further if our

methods allow, and say to what degree it is positive or negative. For example, a friend

of ours watched a movie and used the following sentence, “The movie was OK” to

describe this movie when we asked how it was. The sentence or language in this case

holds a positive sentiment, but does not express a very strong positive opinion. “The

movie was one of the best ones that I have seen” is also positive overall, but on the

other hand also establishes a much stronger positive opinion. If someone wrote or

spoke the latter to us, we would be more inclined to watch this movie ourselves,

because of the strong positive opinion we have created in our mind after hearing it. The

same can be said about negative sentiment, and the degree of which the text expresses a

negative opinion. Figure 1 displays an example of a statement being put through some

sentiment analysis method, and a result being computed. There are various different

methods and techniques for producing a result (middle box), which are the main focus

of academic research when it comes to sentiment analysis.

Figure 1. Statement and analysis example.

In this project we will use one of the more modern approaches developed at Stanford

around 2013 for our sentiment analysis steps— Recursive Neural Tensor Network with

10

Sentiment Treebank [2]. The reasoning behind this choice is that this model performs

very well and comes with well-developed software tools for using it, which we discuss

below. To back up our results, we will also use a more classical approach, in the use of

the Naive Bayes classifier. Alternative methods include using a few other modern

approaches, word2vec and fastText [6][27-29].

3.1. Background

Sentiment analysis has become a very active and popular research topic over the last

several years, and has seen tremendous growth since the early 2000’s. Not only has it

grown in academia, but also multiple large tech companies like Google, Microsoft and

Amazon have become more invested in sentiment analysis by dedicating more

resources to studying, improving and implementing it in their businesses. Thanks to the

various applications and interest from both the industry and academic fields, sentiment

analysis has seen steady and continuous growth since the turn of the century to present

day. Figure 2 shows the Google interest over time (Google Trends) for the term

‘sentiment analysis’.

11

Figure 2. Google Trends for the term ‘sentiment analysis’. [7]

The start of the sentiment analysis field may be attributed to multiple factors, but the

most influential one was the boom of the internet after the turn of the century, or what

we most often refer to as Web 2.0. Although Sentiment Analysis, like Natural Language

Processing and Linguistics, involves the study of text, there was no research related to it

prior to the year 2000. This is due to the fact that even though a lot of written or spoken

opinions existed before that time, close to none of it existed in digital format.

The rapid growth of the web and social media sites have allowed for large and

continuous streams of structured and unstructured opinion data to be stored in digital

formats. Web pages can easily be mined for text. Text can also be stored and accessed in

databases, allowing software developers and scientists to develop different tools and

techniques in improving the sentiment analysis field. For example, giant web stores like

Amazon house millions of reviews on products sold through their store. Online

communities on various forums or reddit also contain large amounts of openly

available opinion data related to news, politics, sports, products, etc.

12

From the opinion data sources out there, the biggest one is social media. Sites like

Facebook, YouTube, and Twitter allow billions of users from any country, in any part of

the world to instantly express their views on any topic. They also allow for users to

easily connect and communicate among each other. Social media sites have become

embedded in our everyday lives and society to such a degree, that we are now talking

about them being used to influence opinions, and having the capability of swinging

political elections. The data generated from these social media websites is one of the

biggest contributors to the increasing popularity of the study of sentiment analysis. [7-

8].

3.2. Sentiment

In order to perform and understand sentiment analysis, we must first clearly define

what sentiment is. Although there are multiple dimensions and characteristics to

analyzing, defining, and presenting sentiment, which unlock more interrelated sub-

problems, we will concentrate on only the main characteristics, and define an

abstraction of the sentiment analysis problem.

Sentiment is the underlying attitude, feeling, or emotion associated with an opinion. We

represent it as a tuple,

(o, i),

13

where ‘o’ represents the orientation of the sentiment, and ‘i’ represents the intensity of

the sentiment. The orientation of the sentiment can sometimes also be referred to as

polarity, class, or semantic orientation.

• Sentiment orientation: Orientation can be positive, negative, or neutral. In the

event that a sentiment orientation is classified as neutral, that usually means an

absence of sentiment, or no sentiment. An example of a neutral statement could

be something on the lines of, “I don’t know if I liked the movie. I should watch it

again in a quiet environment.”

• Sentiment intensity: In addition to orientation, we can also add a value to

intensity, when looking at a statement of opinion. Sentiment intensity refers to

how strong of an opinion the statement expresses. In the introduction section of

this paper we gave examples of two statements describing a movie. Both were

positive, but one of them portrayed a much stronger opinion.

In more practical and real-world applications for example, we could see sentiment

intensity as a five-star rating system. Where five stars means highly positive, four stars

as somewhat positive, three stars as neutral, two stars as somewhat negative, and one

star as highly negative.

14

Using a range from -1 to 1 is also very often seen as a good way to simplify sentiment

orientation and intensity. A positive orientation is represented by +1, 0 a neutral, and -1

a negative orientation. The numbers in between can be treated as a scale of how

negative or positive the intensity is. In a previous example we saw that the statement

“Exercise is great” produced a result (through some algorithm) of positive 0.7—which is

very positive. This simplified approach is most often used in academia and sentiment

analysis systems, and is what we will prefer in this project [8].

3.3. Problem and Characteristics

We would love for sentiment analysis to be exact and produce accurate results for all of

our input, but that is simply impossible in today’s day and age. If we go back to the

definition of the problem that sentiment analysis is trying to solve, it is to develop

automatic tools, such that given an input text they output a classification. Language is

simply too complex for us at this stage to develop automatic methods for detecting and

classifying sentiment with 100% accuracy. We can only hope for high percentage of

accuracy, and in reality, that should be enough for us. Given a large input size and high

probability of accurate results, means that we should be able to produce an accurate

enough result even though we could have misclassified some inputs.

As mentioned before, sentiment analysis is a deep and complex field of research, in

which during the analysis phase, multiple characteristics can be considered. For this

15

project we will only be concerned with the main such characteristics. Next, we describe

and discuss these characteristics and challenges in more detail.

Objective vs. Subjective Sentences

Unlike factual texts, sentiment and opinion have one important characteristic, and that

is that they are subjective. The first step in sentiment analysis usually involves

distinguishing between subjective and objective text. In the event that a sentence or text

is classified as objective, no other steps are necessary. However, if a sentence is

classified as subjective, its orientation and intensity (positive, negative, neutral) are to

be estimated. Fig 3 demonstrates this process, and the basic workflow when classifying

a sentence.

Figure 3. Classification workflow. [7]

We call the task that distinguishes between an objective (factual) sentence and a

subjective (express views and opinions) sentence, subjectivity classification. Polarity

classification is the step that determines if a sentence is positive, negative, or neutral.

16

“The MacBook is a laptop” is an example of an objective sentence, and “The MacBook is

a great laptop” is an example of a subjective sentence, with positive polarity. It is

important to note that a subjective sentence can sometimes not portray positive or

negative polarity. The sentence “I think the MacBook shipment has arrived” is neither

positive nor negative, and is thus classified as neutral [7].

3.3.2. Levels of Analysis

When performing sentiment analysis on a text, there are multiple levels at which the

text can be analyzed. Generally speaking, when analyzing social networks this can be

done essentially at three levels. Fig. 4 shows these levels [7].

Figure 4. Levels of analysis. [7]

• Message level: The goal is to determine the orientation/polarity of the entire

opinionated message. An example of this might be a product review on an online

store like Amazon. The system determines what the entire review is expressing,

17

positive, negative or neutral overall opinion about the product. The assumption

here is that the entire message expresses only one opinion on a single entity (a

product in our example).

• Sentence level: The goal is to classify the orientation/polarity of each sentence

contained in the entire text. The assumption is that each sentence in the entire

text expresses a single opinion on a single entity.

• Entity and aspect level: The goal is to perform a deeper analysis than message

and sentence levels. This level of analysis assumes that an opinion consists of

sentiment and a target (of opinion). For example, “The MacBook is a great

laptop, but it needs work on security issues and battery life”. This sentence

evaluates to three aspects: MacBook – positive, security – negative, and battery

life – negative.

Regular vs. Comparative Opinion

An opinion can be of different shades, and can be part of one of the following groups:

• Regular opinion: Sometimes referred to as a standard opinion in literature.

There are two main subtypes:

o Direct opinion: Refers to an opinion expressed directly about an entity.

For example, “The retina display on the MacBook is gorgeous.”

o Indirect opinion: Refers to an opinion expressed indirectly on an entity,

on the basis of its effects on some other entity. For example, “After I

18

upgraded my MacBook OS, I lost all my settings!” Shows a negative effect

on “my settings”, which indirectly gives a negative sentiment to the

MacBook.

• Comparative opinion: Expresses a relation of similarities or differences between

two or more entities. For example, “MacOS performs much better than Windows

10” and “MacOS is the best operating system” both express comparative

opinions. A comparative opinion is usually expressed with the use of a

comparative form of an adjective or adverb.

3.4. Applications

Another reason behind the growing popularity in academia and industry for sentiment

analysis, other than that it is a very interesting topic for research, is the real-life

applications that can be developed around it. Knowing the opinions of individuals,

whether they are customers, consumers, or voters can be a very powerful tool.

Sentiment analysis enables multiple, different and interesting applications, in almost

every possible domain.

Opinions, and the understanding of those opinions, through sentiment analysis is very

important to businesses and organizations, because they want to find out what their

customers or the public thinks about their products and services. Answers to important

19

questions like, “Why are consumers not buying this product?” or “Why and what are

customers liking about a product, so that we can make it even better in future

revisions?” can be of tremendous help to marketing or design teams at a company. In

addition, these opinions can also be beneficial to a customer in helping them to decide

whether to buy a product or not. Not only that, but if there are multiple variations or

configurations of a product, which variation to buy. Consumers are no longer limited to

only asking friends or family for their opinions, but have the opinions of hundreds or

thousands of other customers.

Another domain that has used sentiment analysis and has seen beneficial results, is in

politics. Simply put, opinions matter a whole lot in politics. One of the first to openly

admit to using sentiment analysis and social media in the US was president Barack

Obama’s campaign. During the 2008 presidential elections, sentiment analysis was used

to gauge the feelings of core voters. Understanding the opinions of voters can help

campaign managers and candidates understand what issues most concern the public,

and ultimately swing an election.

The possibilities are near endless, and more and more creative ways are being thought

out of to apply sentiment analysis in our everyday lives. Spam detection algorithms use

sentiment analysis in their pipeline when detecting if an e-mail is spam or not.

20

Advertisers like Google can gain an insight into what a successful ad looks like for a

specific user on their platform like YouTube, where each ad is tailored as much as

possible to the viewer, and where sometimes an ad can be skipped after 5 seconds. Last,

but not least, the financial and medical field also see benefits in using sentiment

analysis. In a study, sentiment analysis was applied to examine how exposure to

messages about a drug used to treat nicotine addiction affected the decision of smokers

to use it or not [7-8][22][25].

3.5. Previous Research

Because there are a lot of different ways to approach the problem, sentiment analysis

research has branched into several academic fields, where many different techniques to

tackling the problem have been, and are being developed. One such field is Natural

Language Processing (NLP), in which sentiment analysis is commonly seen as a

subarea. Some researchers have gone as far as saying that every subproblem of NLP is

also a subproblem of sentiment analysis, and vice versa. The argument is that sentiment

analysis touches every core area of NLP, such as lexical semantics, coreference

resolution, and word sense disambiguation. In general, it can be said that sentiment

analysis is a semantic analysis problem, but it’s highly focused and restricted because a

sentiment analysis method does need to fully “understand” each text—it merely needs

to assimilate some forms of it—mainly positive and negative opinions on an entity. It is

21

not then uncommon to see that in the following sentiment analysis techniques or

approaches, NLP is involved in one way or another [24-26].

3.5.1. Naïve Bayes Classifier

Naïve Bayes Classifier is a popular supervised learning method that stems from the

Machine Learning field, and has been adopted for sentiment analysis in some of the

earliest research. As we mentioned before, there are multiple algorithms and methods,

some of which more effective than others, but Naïve Bayes is a very good baseline and

is fairly effective itself. It is a probabilistic classifier based on the Bayes Theorem.

Because sentiment analysis is a text classification problem, different supervised learning

methods can be applied, including support vector machines (SVM) and naïve Bayes

classification. Pang, Lee, and Vaithyanathan were one of the first to propose and

experiment with using a multinomial naïve Bayes classifier for sentiment analysis in

2002, for their paper Thumbs up? Sentiment Classification using Machine Learning

Techniques [23]. The authors of the paper were able to achieve near 80% accuracy using

the Bayesian classifier in their experiments. Since then, there has been an increase in the

amount of research using this method, and numerous other papers have been

published.

22

The Bayesian classifier is called naïve because it makes independent (naïve)

assumptions about how features interact and are ordered. For example, when looking at

a text, it does not take into effect the order of words appearing, or if phrases can be

identified by seeing the same groups of words following or preceding each other. The

text is represented as if it were a “bag-of-words” or a set, with only a frequency count of

the number times that a word appeared in that text, and their positions are ignored. Fig.

5 demonstrates how a text document, in this case a movie review, is broken down into

words with only the frequency count of each word tracked. The word “seen” appeared

2 times, the word “it” appeared 6, etc. [9].

Figure 5. A “bag-of-words” assumption for Naïve Bayes Classifier. Word position is ignored, and a

frequency of each word is stored. [9]

The implementation of the algorithm can be best described by the following three

phases:

• Training Phase: The algorithm is trained on documents already classified as

positive, negative, or neutral. This can be manually classified training sets,

23

dictionary words, phrases, etc. We want some baseline data for which we are

very certain of its classification.

• Testing Phase: After training, the algorithm is tested to calculate the accuracy.

Sometimes adjustments like tweaking the probabilities for how missing training

words are handled, or adding more training data is used to improve accuracy

during in this step.

• Classification Phase: The algorithm is given previously unseen text as input to

classify as positive, negative, or neutral.

Outline

Let’s look at a step-by-step outline of how the classifier works, after which we will

follow with a basic worked out example in the next section.

1. We take some training documents for which we know the classification. For each

document, we will break it down into words, count how many times each word

appears, only keeping a vector of word and frequency at the end.

2. From the training documents, compute the probability of each class, P(c). That is,

if we have 10 training documents, and 4 of them are positive, P(+) = 4/10.

3. For all classes, compute the probability of each word: 𝑃(𝑤𝑘|𝑐) =
𝑛𝑘+1

𝑛+|𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦|
. Let

n, be the total number of words in the class c. Let 𝑛𝑘 be the number of times that

a word k occurs in the class c. Note that if a word does not appear in a class it

24

will still have some small probability value, and not equal 0. Just because an

event has not happened before, does not mean that it will never happen. This is

referred to as additive smoothing or Laplace smoothing, and the smoothing

factor can be tuned accordingly.

4. Test with a test document unseen by the training phase to verify. Compute all

the probabilities of the test case for each class multiplied by the probability of the

class, and select the one with the highest probability: 𝑉𝑁𝐵𝐶 =

 argmax
𝑣𝑗 𝜀 𝑉

 𝑃(𝑣𝑗) Π
𝑤 𝜀 𝑤𝑜𝑟𝑑𝑠

𝑃(𝑤|𝑣𝑗). Let V stand for value or class. If a word in the test

case does not appear in the training data, the simplest and most common

solution is to remove it.

5. Finally, use the classifier like in the test phase on never before seen documents

we want to classify.

Example

We show what running the Naïve Bayes Classifier looks like on a set of very set limited

data. For simplicity we will only work with two classes (positive and negative), but

adding more (like neutral) is trivial, and will not change anything previously defined.

We would still compute the probability of each class in the usual way, and select the

class with the highest probability. Let’s consider the following very basic documents

and classifications as our training and test data [9]:

25

ID Case Class (+ / -) Document

1 Train Positive Very powerful

2 Train Positive The most fun film of the summer

3 Train Negative Just plain boring

4 Train Negative Entirely predictable and lacks energy

5 Train Negative No surprises and very few laughs

6 Test ? Predictable with no fun
Table 1. Training and predict data for Naïve Bayes Classifier.

We first compute the number of occurrences of each word, then compute the

probability of each class, and finally the individual probability of each word in each

class. We will again use a chart to better visualize this. The probability of each class is:

𝑃(+) =
2

5
 𝑃(−) =

3

5

For the positive class:

ID Very Powerful The Most Fun Film Of The Summer

1 1 1 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1
Table 2. Naïve Bayes word count of positive class.

Each word appears only once, but in the event that it appeared more we would count it.

The number of words in the positive class (n) is 9, and the size of the vocabulary is 20.

The same table can be drawn for the negative class documents. Next, we compute the

individual probabilities of each word for each class. To simplify things again, we will

only show the words that we need for the test phase, “predictable”, “no”, and “fun”,

but in order to speed things up for future computations the algorithm implementation

in reality will compute all the words in the training data. In the real-world we could be

dealing with thousands or millions of training documents. The word “with” was

26

discarded as mentioned before, because it does not appear in any of the training

documents for any of the classes.

𝑃(predictable|+) =
0 + 1

9 + 20
 ; 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒|−) =

1 + 1

14 + 20

The word “predictable” does not occur in any documents classified as positive, there

are 9 total words in the positive class, and there are 20 total words in the vocabulary.

“Predictable” appears once in the negative class, there are 14 total words in the negative

class, and there are 20 words in the vocabulary.

𝑃(𝑛𝑜|+) =
0 + 1

9 + 20
; 𝑃(𝑛𝑜|−) =

1 + 1

14 + 20

𝑃(𝑓𝑢𝑛|+) =
1 + 1

9 + 20
; 𝑃(𝑓𝑢𝑛|−) =

0 + 1

14 + 20

Finally, we compute the total probabilities for each class for the sentence V =

“Predictable with no fun” and select the larger value.

𝑃(+)𝑃(𝑉|+) =
2

5
∗

1 ∗ 1 ∗ 2

293
= 3.2 ∗ 10−5

𝑃(−)𝑃(𝑉|−) =
3

5
∗

2 ∗ 2 ∗ 1

343
= 6.1 ∗ 10−5

The value with the higher probability is the negative class, and thus our classifier has

concluded that the sentence V is negative. Of course, this is only a simple example to

give an overview and in real-life applications these computations become much more

complex. Log-space reduction is used in order to increase speed and avoid underflow.

27

3.5.2. Recursive Neural Models

Recursive Neural Models are characterized by their use of vector representations.

Vectors (ordered set of numbers) are used to represent words, as well as all sub-

sentences related to an input’s syntax tree. Word representations are trained with a

model, and the representations of sub-sentences are calculated with a compositionality

function. To calculate the sub-sentence’s representations, a bottom-up compositionality

function is applied according to the input’s parse tree. Finally, all vectors are fed to the

softmax classifier to determine the sentiment. The differences between the recursive

models come in the choice of compositionality function. The most popular models are

Recursive Neural Network (RNN), Matrix-Vector RNN, and the newly developed

Recursive Neural Tensor Network (RNTN) discussed in the paper below.

Sentiment Treebank

The paper titled Recursive Deep Models for Semantic Compositionality Over a Sentiment

Treebank by Socher R., Perelygin A., Wu J., Chuang J., Manning C.D., Ng A., and Potts

C., was published in 2013 and first proposed the use of a Sentiment Treebank and

Recursive Neural Tensor Networks (RNTN). The paper stated that in order to further

progress for more accurate sentiment analysis techniques, richer supervised training

and evaluation resources and more powerful models of composition were needed. The

main ideas behind the Sentiment Treebank was for it to aid semantic word spaces

28

(representations of natural language able to capture meaning) in expressing the

meaning of longer phrases in a principled way—a model to train on. RNTNs were

originally designed for sentiment analysis and to analyze data that had hierarchical

structure. Unlike naïve Bayes classifier, where words are considered individually,

RNTNs compute the sentiment of a sentence not only on its words, but on the order in

which they are syntactically grouped.

The results were very promising, as the authors were able to increase positive/negative

single sentence classification up to 85.4% from 80%. Also, the accuracy of predicting

fine-grained sentiment labels for all phrases was at 80.7%, 9.7% above baselines in

previous research. The model was also able to accurately capture the effects of negation

and its scope for positive and negative phrases [2].

The Sentiment Treebank contains fine grained sentiment labels over five classes for

215,154 phrases. In addition, it houses a collection of 11,855 sentences with fully labelled

parse trees. The paper proposes a Sentiment Treebank used for training, which includes

labels for every syntactically plausible phrase in thousands of sentences. In order to

improve analysis results, the word order in a sentence should be taken into account,

and the sentiment treebank assists in doing so. It allows for better predictions of longer,

29

more complex phrases as well as more accurately predicting negation of phrases. “Not

very good,” is an example of such a phrase [2].

To build the Sentiment Treebank, the authors used movie reviews from the

rottentomatoes.com website. Their original dataset included 10,662 sentences, half of

which were positive and the other half negative. Different phrases were then extracted

from the reviews and classified by humans on Amazon’s Mechanical Turk platform.

This is how the resulting 215,154 phrases were labeled over five classes, from very

negative to very positive.

Figure 6. Example of a phrase inside the Sentiment Treebank. [2]

In Fig. 6 we show an example of a phrase inside the Sentiment Treebank—each data

point is the binary syntax tree of a rotten tomatoes review. The tree’s root, as well as its

child nodes, are labeled with sentiment values between 1 and 25, with 25 being the best

30

possible review and 1 being the worst (crowdsourced on Amazon Mechanical Turk).

RNTNs will use these parse trees to compute parent vectors in a bottom up fashion.

Recursive Neural Tensor Network

The Neural Tensor Network (RNTN) is a model to used learn these fine-grained

sentiment labels, and when trained on the new Sentiment Treebank, the model is shown

to outperform previous methods on multiple metrics. A deeper examination into how

the classification function and data flows recursively through an RNTN can be found in

[2][5]. We will show a brief overview of how the RNTN looks and works.

Breaking it down, an RNTN is a binary tree with a root and two children as shown in

Fig. 7. Each child and root are a collection of neurons, and the number of the neurons

depends on the complexity of the input. The child or leaf nodes receive input words

and the root uses a classifier to produce a class and a score.

Figure 7. Structure of a RNTN. [5]

31

As its name implies, data flows recursively through the network. Given an input

sentence, the network produces a parse tree, as depicted in Fig. 8 for the sentence “The

car is fast.” In the first step, the first two words are used as input to the leaves at the

very bottom. Because these networks work best with vector representations of the

words, when we say that they are used as input, we mean that their vector

representations are used. The two vectors move up to the root where they are

processed, and a class and score are computed. The score represents the quality of the

current parse, and the class represents an encoding of a structure in the current parse.

At this stage is where the recursion begins and the tree is built out upward as shown in

Fig. 8. In the next step, the current parse is used as one leaf and the next vector

representation of the word “is” is used as the other. At this stage the new root would

produce the score of a parse that is three words long (“The car is”). The recursion

continues until all the input words are exhausted.

32

Figure 8. Parse tree of a sentence produced by a RNTN. [5]

We just showed a very basic parse tree being produced, but in a real-life application,

more complex recursive processes are encountered. For example, instead of always

using the next word in the sentence for the second leaf node, the RNTN would compute

new parse trees from all of the remaining words. This way, the RNTN is able to pass

through and score every possible parse of the input sentence. In order to pick the best

one at the end, the network uses the score produced at the root node in each recursion.

Fig 9 shows the other two possible parse trees for the example sentence. Once the

RNTN has found the optimal parse tree, it backtracks through it in order to figure out

the correct grammatical label for each part of the sentence. For example, it will go back

and label “The car” as a noun phrase, and “is fast” as a verb phrase.

33

RNTNs are trained with backpropagation by comparing the predicted sentence

structure with the proper sentence structure obtained from a set of labeled training

data. Once trained, the RNTN will give higher scores to structures that are more similar

to the parse trees that it saw in the training phase [5].

Figure 9. Remaining two possible parse trees for the input sentence. [5]

Stanford’s CoreNLP Library

The CoreNLP library is an open-source natural language processing library from

Stanford that contains many language processing tools (called annotators), one of which

is to perform sentiment analysis [3]. The sentiment analysis annotator is based entirely

off of the above research and comes pre-trained, giving us the ability to quickly process

the sentiment of an input sentence with certain accuracy. For an input sentence, the

library produces an integer score in the range 0-4:

34

Score Mapping

0 Very Negative

1 Negative

2 Neutral / No Sentiment

3 Positive

4 Very Positive
Table 3. CoreNLP sentiment scoring.

Another annotator that we will use from this library is the “ssplit” annotator to split our

review text into multiple sentences. After tokenizing a text, the ssplit annotator

produces a list of sentences that are contained within the original text. Each sentence

then will be the input to the sentiment analyzer.

3. Dataset and Overview

In order to run our experiment, we use a rich dataset of real life Yelp reviews provided

by Yelp as our baseline data input. [1] The entire dataset consists of 5.2 Million reviews

for 174,000 different businesses. Although the dataset also contains many more

interesting features, the main ones we care about are the review texts and users.

35

Figure 10. Schema representation of the Yelp Dataset.

3.1. Preprocessing

From the total dataset, only users with 50 or more reviews are extracted and the rest are

discarded. We do this because there should be a large enough set of reviews written by

the same user in order to detect patterns in his or her behavior. What is left is the

following dataset which we use as our starting point:

Total Users: 9,701

Total Reviews: 1,079,812
Table 4. Working dataset size.

3.2. System Overview

Given the nature of our operations and the size of our starting dataset, we will be

producing large amounts of data with multi-million records. The CoreNLP library used

for our sentiment analysis and sentence tokenizer is native to Java and is run in a

parallel across multiple machines and threads to speed up our computations.

36

Intermediate and final results are persisted in a Mongo database. Finally, to piece

everything together and compute the final results, Apache Spark is used as the compute

engine. Spark is extremely efficient at parallelizing computations by performing them

in different stages and can handle inputs in the hundreds of millions without any

trouble.

4. Sentiment Vectors and Tuples

We first get a feeling for the structure of what each review looks like so that we can

match if there are similar patterns found in other reviews left by the same user. As

mentioned before, we perform sentiment analysis on each review, but on a sentence

level. This gives us insights into the opinions expressed by the user throughout the

entire review. The end result of the sentiment analysis phase is the production of a

“sentiment vector”. The sentiment vector contains the sentiment scoring for each

sentence in the review. For example, if the user left a five-sentence review, with the first

three showing positive sentiment, the fourth sentence showing neutral or no sentiment

and the last sentence showing negative sentiment, then the sentiment vector for that

review will look like this: 33321.

From each sentiment vector, we generate all possible sentiment tuples (orderings,

analogous to n-grams in computational linguistics) of the vector by looking at smaller

and smaller pieces of it. This allows us to break down longer reviews and it is how we

37

will identify repeating patterns if they exist. For example, for the sentiment vector

mentioned above (33321), we generate all possible sentiment tuples of length 3 or longer

(3 is used as the minimum because 2 is too ambiguous and does not provide much

insight into an existing pattern): 3332, 3321, 333, 332, 321.

For a sentiment vector of length n, there will be
(𝑛−2)(𝑛−1)

2
− 1 total tuples of length ≥ 3.

4.1. Defining Abnormality

Given what we now know about each review, we are able to identify reoccurring

patterns via matchings in our tuples and answer a few questions. Does a user leave the

same patterns or partial patterns within his or her reviews? Does this pattern appear

often in all of the reviews left by the user? Is the pattern being discovered throughout

the reviews long? Answering yes to any of these questions is considered abnormal, and

we should account for any of these scenarios. We attribute a weight to each of these

cases and quantify how abnormal each of these occurrences is.

Repetition

We care about a pattern reappearing throughout a user’s reviews because it is abnormal

and should not be happening in a normal scenario. We account for this by measuring

how often an exact pattern has appeared in the user’s review vs. the normal (expected)

occurrence. Thus, a large tuple appearing only once will cancel itself out and have zero

38

score, while the opposite is true for a long one that reappears. A tuple appearing only a

few times will be treated as normal and not contribute much to the repetition tuple

score as expected. For each of the user’s tuples we compute:

Times observed tuple T =
𝑜𝑓 occurrences of T

𝑡𝑜𝑡𝑎𝑙 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑢𝑝𝑙𝑒𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑇

Expected to observe tuple T =
1

𝑡𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑡𝑢𝑝𝑙𝑒𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑇

Repetition tuple score = |𝑇𝑖𝑚𝑒𝑠 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑇 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑂𝑏𝑠𝑒𝑟𝑣𝑒 𝑇|

For example, if we are looking at a user’s tuples of length 5 and they contain: 33321,

33321, 33321, and 7 others that do not repeat and are unique, we have:

Times observed =
3

10

Expected to observe =
1

8

Repetition tuple score = |
3

10
−

1

8
| = 0.175.

Frequency

The next thing we care about is the frequency of the tuple—if a certain tuple appears

multiple times, across multiple reviews, this is abnormal. For each tuple we count how

many times this tuple appears in a review and divide by the total number of reviews.

Tuple frequency =
𝑜𝑓 𝑟𝑒𝑣𝑖𝑒𝑤𝑠 𝑡ℎ𝑖𝑠 𝑡𝑢𝑝𝑙𝑒 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑣𝑖𝑒𝑤𝑠 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 ℎ𝑎𝑠

If a specific tuple occurs in 10 of the 50 total reviews a user has, it has a tuple frequency

of 0.2.

39

Length

Last but not least, we also care about the tuple length. If a tuple is reoccurring multiple

times or with higher frequency, and is also with a large length, this is clearly abnormal.

The chances of that happening for a normal user are extremely low, and we should take

it into account. For the tuple length score, we simply use the length of the tuple.

4.2. Abnormality Score

For each tuple we are now able to produce a score and quantify how abnormal what we

have observed is. The higher the score, the more abnormal this tuple is. We square and

multiply all of the values together giving appropriate boosts to more significant values,

like the length for example.

Tuple abnormality score = 𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑇𝑢𝑝𝑙𝑒 𝑆𝑐𝑜𝑟𝑒2 ∗ 𝑇𝑢𝑝𝑙𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦2 ∗ 𝐿𝑒𝑛𝑔𝑡ℎ2

We now have for every user, and every tuple for that user, a tuple abnormality score.

Summing them all up will give us the total abnormality score for the user itself.

5. Implementation

We use two different methods for sentiment analysis, and later compare the results. We

do this in order to gain a higher confidence in our results, and the users we flag as

abnormal.

40

CoreNLP

After preprocessing, we run the sentiment analysis on each review, tokenizing it into

sentences, and generating a sentiment vector for each review. We use the source code

found in Appendix A1 for this step. The entire process has to be parallelized as this is the

slowest computation phase of the entire project, which took around ten days to

complete. The 1.1M initial reviews generated 12.6M sentences, each of which is passed

through sentiment analysis. A local 6-core CPUs was used as well as a 64-core Google

Cloud Compute instance to process all of the data in this step. Since the CoreNLP

library comes pre-trained we can simply feed it our input, and it will return a sentiment

value for that input.

After completion and merging of all results, we are left with two intermediate tables. A

reference table holding the user id, review id, sentence, sentence position in the review,

and the sentiment score for each sentence. And a second table holding the sentiment

vector for each review, which we use next to generate the sentiment tuples from. We

now are able to associate a specific review to a sentiment vector.

The next step is to dive deeper and allow ourselves to find patterns for the reviews by

generating the sentiment tuples for each vector. For each sentiment vector longer than 3

we generate tuples of length n-1 to 3, and if the vector is of length ≤ 3 we simply use it

41

as a tuple. We use the source code found in AppendixA2 for this step. We now are able

to associate a sentiment vector with all possible tuples of length 3 or more for that

vector. This allows us to perform pattern matching and see if we are able to find any

reoccurring patterns among a user’s reviews. This intermediate table is the final table

needed in order for us to compute the associated tuple abnormality scores and user

abnormality scores.

The final step is to compute the results and save them in a new table for later review.

From the generated sentiment tuples intermediate table, we compute the results table

that contains every unique tuple associated with each user and all statistics and scores

for that tuple. We use Apache Spark for this last step and the source code in Appendix

A3. Tuples scoring high are considered abnormal. Summing up the abnormalities per

user gives us the total user abnormality score, and sorting by that score gives us the top

users.

Naïve Bayes

For the naïve Bayes sentiment analysis method, we need to mirror the exact steps above

in the CoreNLP method, with only one difference: we will need to train our model.

Unlike CoreNLP, which comes pre-trained, the naïve Bayes model needs to be trained

in order to predict a result. We use the remaining data which we discarded during our

42

preprocess phase. Namely, the reviews from users with less than 50 total reviews

amounting to roughly 4.1M in total.

In order to improve sentiment results, we also remove stop words from our dataset.

Words like “a”, “and”, “but”, “how”, “or”, “what”, etc. do not add value to sentiment

and are removed in order to not pollute our word counts. We train and save our model

with the source code in Appendix B1. Next, with Appendix B2 we run our model to

predict the sentiment for the 12.6M sentences previously identified. At this stage we are

ready to produce our review sentiment vectors and tuples—done so with the source

code provided in Appendix B3. Apache Spark and Appendix A3 is used again for the final

computation of our results. After completing our results table, we sum up the scores for

all the users, sort them in descending order by their abnormality score and have the top

users identified for abnormalities in their reviews.

6. Results
Validation

We first look at our computed user abnormality scores and validate that each of the

sentiment analysis methods produced viable results, by looking at the user score

distributions. Flagged users, who had abnormal reviews that triggered our abnormality

filters can be identified by looking at users with scores one (> 1σ) and two (> 2σ)

standard deviations away from the mean. From the 9,701 users studied, we see only a

43

small number of users that stand out, have bubbled up, and should be examined more

closely. Figure 11 describes the user abnormality score distribution for the different

CoreNLP and Naïve Bayes sentiment analysis methods. We are concerned with roughly

looking at less than 1% of the total users studied, which validates our initial thoughts

and definition of abnormality. That is, that only a small number of users, if any, should

be bubbling up.

Figure 11. Results for the user abnormality score distribution.

Next, we look to see if our different sentiment analysis methods produced overlapping

results, further strengthening our evidence against the top abnormality scored users. If

we take the top abnormality scored users from both methods, and see that a user

appears in both, we can say with even high confidence that this is not due to a

coincidence. This means that a user’s reviews triggered the abnormality definitions in

84 130

9571

57 122

9579

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

> 2σ > 1σ < 1σ

U
se

rs

Score Distribution

User Abnormality Score Distribution

CoreNLP NB

44

both sentiment analysis methods, and that we have scored these abnormalities

accordingly. Looking at our distribution, we should be concerned with looking at

roughly the top 150 users from the 9,701 initially studied. Figure 12 displays the match

rates for the top 150 abnormality scored users in both, the CoreNLP and Naïve Bayes

methods.

Figure 12. Results for the top abnormality scored users match between the CoreNLP and Naïve Bayes methods.

Examples

Let’s look at some concrete examples of users and reviews to see why they have

bubbled up in our results. We use users that appear in both the CoreNLP and Naïve

Bayes methods, and as Figure 12 demonstrates that for the top 50 users, we have a 65%

match. Here are reviews from two different top scoring users:

0

10

20

30

40

50

60

70

0 25 50 75 100 125 150

%
 M

at
ch

in
g

Top Scored Users

% Match Between Models of Top Scored Users

45

“Je ne suis pas d'accord avec la critique précédente de Joshua L. au sujet de ce resto vietnamien.

Contrairement à ce qu'il prétend, le service ici est correct, courtois et rapide. Je suis venu ici avec un

collègue et le serveur est venu nous voir dès notre arrivé. Nos assiettes ont été servies en 5 minutes, ce qui

est un délai très raisonnable”…

“Backwaren, die noch schmecken wie beim Bäcker. Ja ich weiss es gibt tausende Bäcker, und auch der

Treiber hat mittlerweile ein Filialangebot das sich auf 18 Geschäfte erstreckt, aber irgendwie ist er eben

anders. Zunächst gab es die leckeren Filderwäckle nur auf den namensgebenden Fildern, doch schon

bald stellte das clevere Unternehmen fest, dass man auch in der näheren Umgebung und in einigen

Stadtteilen von Stuttgart die aromatischen Brötchen, Brezeln und Brote, Kuchen, süße Stückle lieben

wird”…

The first thing we notice is unexpected, yet a logical result based on the analysis and

pattern matching we performed. We notice that some of the top abnormally scored

users are German or French. The sentiment analysis models we used were trained on

the English language, and there was no way for them to distinguish users based on

their nationality or language. Since the sentiment analyzer didn’t understand the text it

classified the foreign language sentences very similarly. This is what made the patterns

look similar and gave them more weight leading them to bubble to the top. A high

percentage of sentences were scored as 1’s, producing many similar looking patterns.

This on its own can be considered an abnormality in our case and can be viewed as a

successful identification.

Next, we look into a user that had an abnormally long tuple of length 55

(1221131131211111331111311111111113412311122121111211121) appear in 4 of his 55

reviews. It turns out the user had copy/pasted the following long text into these

reviews, all four for different businesses, and our methods picked up on them:

46

“This is going to be a long one . . I used Grayline twice during my Vegas Vacation. First, as

transportation to and from the airport. . .tip. . DO NOT BOOK ONLINE AHEAD OF TIME. Just get your

tickets at the airport---I was charged $2 extra because I pre-booked (price online $16 price at airport $14).

The shuttle to the hotel was very hot, sweat stains were visible on every seat--very appealing”…

We also notice a different user using extremely long repetition. A tuple of length 78 of

all 2’s (neutral sentiment) appeared. The user had used the word “waited” 78 times one

after another in one of the reviews, and we classified it as abnormal:

Great place. Beautifully designed space. Food seems ok but since I've never eaten here I can't comment.

Service is atrocious. I ordered. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited.Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited.Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited.Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited.Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited. Waited.Waited.

Waited. Waited. Waited. Then half of my food showed up. Great. Wolfgang Puck is literally across the

way. Why did I come here? Bad recommendation from a tasteless friend.

In another case, we notice that a significantly sized tuple (31112) has occurred 51 times

in 60 of the user’s total reviews. It turns out that this user has prefixed all 51 of these

reviews with the same sentences, and later follows up with different text that are

actually her review. Table 5 displays the repeating tuple in question, including the

sentence and sentiment score breakdown.

47

Sentence Sentiment Classification
OK, so check this out. 3

I know I have been long dormant with the Yelp

reviews (bad girl, BAD GIRL!)

1

So to make it up to ya'll, I am now embarking on a

casino-by-casino tour of my new hometown of

LV, NV, and will include reviews of each as I tour

them.

1

Now, these will not include room stays, but just

schlepping around the premises - eating,

drinking, and checking out anything that moves

or doesn't move.

1

Got it? 2

Table 5. Example of a reappearing highly scored sentiment tuple’s sentence and sentiment classification.

7. Conclusion and Future Work

We proposed a way to look at user reviews and signal for possible abnormalities by

detecting patterns in the reviews which they leave. This alone is not enough to say with

a high degree of certainty that a user is leaving fake reviews, but it can be used as an

input to a more complex detection system to do so.

Our results showed that from the users we looked at, we detected possible

abnormalities in less than 1% of them, classifying the rest as behaving normally. Based

on the distribution of our results, it is recommended that users with scores placing

above the one standard deviation mark should be more thoroughly examined.

48

Figure 13. Statistical distribution of the top matching users between CoreNLP and Naïve Bayes.

Figure 13 demonstrates where the standard deviations marks fall under in our results.

Scores lower than the one deviation mark become less significant, and are safe to

discard from more rigorous tests.

We were able to detect users using repetition and copy/pasting inside of their reviews

by properly associating a higher abnormality score to these sentiment tuples. Users

using a foreign language also bubbled up in our analysis, but this is to be expected as

the sentiment analyzer we ran in order to gain more insight into the review structure

was trained on the English language—this on its own can be seen as properly

2σ 1σ

0

10

20

30

40

50

60

70

0 50 100 150 200 250

%
 M

at
ch

in
g

Top Scored Users

% Match Between Models of Top Scored Users

49

identifying an abnormality. There was also no way to discard non-English speaking

users from the initial dataset.

A possible scenario for work in the future could include running more different types of

sentiment analyzers and techniques to see how the results may vary. Some examples

could be training and running classifiers based on word2vec and faxtText [27-28].

Another possibility for future work is to tweak the tuple abnormality scoring formula

based on different types of input data.

It would be interesting to see how this model holds up against different types of

datasets. Combining the different sentiment analysis models and our proposed pattern

matching with a dataset from Amazon for example, could open up different features on

which abnormalities can be identified and scored against. Instead of looking at the

dataset only on a per user basis, expanding it across the entire dataset might also help

identify networks of fraudulent users. It could also be that having many fraudulent

users, with few reviews also adds to the challenge of identifying them.

50

References

[1] Yelp dataset challenge, 2018. https://www.yelp.com/dataset/challenge.

[2] Socher, R & Perelygin, A & Wu, J.Y. & Chuang, J & Manning, C.D. & Ng, A.Y. &

Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment

treebank. EMNLP. 1631. 1631-1642.

[3] Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.

Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language

Processing Toolkit In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations, pp. 55-60.

[4] Vincent, James. “AI Trained on Yelp Data Writes Fake Restaurant Reviews

'Indistinguishable' from Real Deal.” The Verge, The Verge, 31 Aug. 2017,

www.theverge.com/2017/8/31/16232180/ai-fake-reviews-yelp-amazon.

[5] Deep Learning Fundamentals. Nov. 2017, http://cognitiveclass.ai/courses/introduction-

deep-learning.

[6] Joulin, Armand, et al. "Bag of tricks for efficient text classification." arXiv preprint

arXiv:1607.01759 (2016).

[7] Pozzi, Federico Alberto, et al. Sentiment analysis in social networks. Morgan

Kaufmann, 2016.

[8] Liu, Bing. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge

University Press, 2015.

[9] Jurafsky, Dan, and James H. Martin. Speech and language processing. Vol. 3. London:

Pearson, 2014.

[10] Jindal, Nitin, Bing Liu, and Ee-Peng Lim. "Finding unusual review patterns using

unexpected rules." Proceedings of the 19th ACM international conference on Information and

knowledge management. ACM, 2010.

[11] Mukherjee, Arjun, et al. "What yelp fake review filter might be doing?." ICWSM.

2013.

[12] Jindal, Nitin, and Bing Liu. "Review spam detection." Proceedings of the 16th

international conference on World Wide Web. ACM, 2007.

[13] Mukherjee, A., Liu, B., & Glance, N. (2012, April). Spotting fake reviewer groups in

consumer reviews. In Proceedings of the 21st international conference on World Wide Web

(pp. 191-200). ACM.

[14] Sandulescu, V., & Ester, M. (2015, May). Detecting singleton review spammers

using semantic similarity. In Proceedings of the 24th international conference on World Wide

Web (pp. 971-976). ACM.

[15] Li, Jiwei, et al. "Towards a general rule for identifying deceptive opinion spam."

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Vol. 1. 2014.

51

[16] Jindal, Nitin, and Bing Liu. "Opinion spam and analysis." Proceedings of the 2008

International Conference on Web Search and Data Mining. ACM, 2008.

[17] Qian, Tieyun, and Bing Liu. "Identifying multiple userids of the same author."

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.

2013.

[18] Peng, Qingxi, and Ming Zhong. "Detecting Spam Review through Sentiment

Analysis." JSW 9.8 (2014): 2065-2072.

[19] Li, Fangtao, et al. "Learning to identify review spam." IJCAI Proceedings-International

Joint Conference on Artificial Intelligence. Vol. 22. No. 3. 2011.

[20] Akoglu, Leman, Rishi Chandy, and Christos Faloutsos. "Opinion Fraud Detection

in Online Reviews by Network Effects." ICWSM 13 (2013): 2-11.

[21] Eisenstein, Jacob, Amr Ahmed, and Eric P. Xing. "Sparse additive generative

models of text." (2011).

[22] Yu, Boya, et al. "Identifying Restaurant Features via Sentiment Analysis on Yelp

Reviews." arXiv preprint arXiv:1709.08698 (2017).

[23] Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment

classification using machine learning techniques." Proceedings of the ACL-02 conference on

Empirical methods in natural language processing-Volume 10. Association for

Computational Linguistics, 2002.

[24] Dey, Lopamudra, et al. "Sentiment Analysis of Review Datasets Using Naive Bayes

and K-NN Classifier." arXiv preprint arXiv:1610.09982 (2016).

[25] Go, Alec, Richa Bhayani, and Lei Huang. "Twitter sentiment classification using

distant supervision." CS224N Project Report, Stanford 1.12 (2009).

[26] Pang, Bo, and Lillian Lee. "A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts." Proceedings of the 42nd annual

meeting on Association for Computational Linguistics. Association for Computational

Linguistics, 2004.

[27] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector

space." arXiv preprint arXiv:1301.3781 (2013).

[28] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their

compositionality." Advances in neural information processing systems. 2013.

[29] Goldberg, Yoav, and Omer Levy. "word2vec explained: Deriving Mikolov et al.'s

negative-sampling word-embedding method." arXiv preprint arXiv:1402.3722 (2014).

[30] Babu, Prashanth. Twitter Sentiment Analysis with Spark MLlib. Sept. 2016,

github.com/P7h/Spark-MLlib-Twitter-Sentiment-Analysis/wiki.

[31] de Toit, Jurgens. The Bayes Classifier: Building a Tweet Sentiment Analysis Tool. Aug.

2015, cloudacademy.com/blog/naive-bayes-classifier.

[32] Czerny, Michael. Modern Methods for Sentiment Analysis. Mar. 2015,

districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis.

52

Appendix: Source Code

The entire source code for this project is available at the following Git repository:

https://github.com/sgloutnikov/masters-writing-project

A1. CoreNLP Sentiment Analysis and Vectors

public class SentenceSentimentWorker implements Runnable {

 String host = "";

 int port = 27017;

 int limit;

 int skip;

 MongoClient mongoClient = new MongoClient(host, port);

 MongoDatabase database = mongoClient.getDatabase("yelp_reviews");

 MongoCollection<Document> sentimentResults =

database.getCollection("sentiment_results");

 MongoCollection<Document> sentimentVectors =

database.getCollection("sentiment_vectors");

 MongoCollection<Document> dataCollection = database.getCollection("review_50");

 public SentenceSentimentWorker(int limit, int skip) {

 this.limit = limit;

 this.skip = skip;

 }

 public void run() {

 // Set annotators

 Properties props = new Properties();

 props.setProperty("annotators", "tokenize, ssplit, parse, sentiment");

 StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

 System.out.println(Thread.currentThread().getName() + " starting...");

 try {

 Gson gson = new GsonBuilder().create();

 JsonParser jsonParser = new JsonParser();

 //Get input from MongoDB

 List<Document> inputList = dataCollection.find().sort(ascending("_id"))

 .limit(limit).skip(skip).into(new ArrayList<Document>());

 List<Document> sentencesDocList = new ArrayList<Document>();

 for (Document review : inputList) {

 JsonElement reviewJson = jsonParser.parse(review.toJson());

 JsonObject reviewObject = reviewJson.getAsJsonObject();

 String reviewId = reviewObject.get("review_id").getAsString();

 String userId = reviewObject.get("user_id").getAsString();

 String sentimentVector = "";

 Annotation annotation =

pipeline.process(reviewObject.get("text").getAsString());

 List<CoreMap> sentences =

annotation.get(CoreAnnotations.SentencesAnnotation.class);

 for (int i = 0; i < sentences.size(); i++) {

https://github.com/sgloutnikov/masters-writing-project

53

 CoreMap sentence = sentences.get(i);

 Tree tree =

sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);

 int sentiment = RNNCoreAnnotations.getPredictedClass(tree);

 sentimentVector += sentiment;

 ReviewSentenceSentiment rss = new

ReviewSentenceSentiment(reviewId, userId,

 sentence.toString(), i, sentiment);

 Document sentenceDoc = Document.parse(gson.toJson(rss));

 sentencesDocList.add(sentenceDoc);

 }

 SentimentVector sv = new SentimentVector(reviewId, userId,

sentimentVector);

 Document sentimentVectorDoc = Document.parse(gson.toJson(sv));

 // Save to Mongo

 sentimentVectors.insertOne(sentimentVectorDoc);

 sentimentResults.insertMany(sentencesDocList);

 sentencesDocList.clear();

 }

 System.out.println(Thread.currentThread().getName() + " DONE!");

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 finally {

 mongoClient.close();

 }

 }

}

public class SentenceSentimentApp {

 public static void main(String[] args) {

 List<Thread> threadList = new ArrayList<Thread>();

 int NUM_THREADS = 8;

 int limit = 1250;

 int skip;

 for (int i = 0; i < NUM_THREADS; i++) {

 // Num skipped initially of already computed

 skip = 170000 + (i * limit);

 System.out.println("Thread-"+ i + " range: " + skip + "-" + (skip+limit));

 SentenceSentimentWorker worker = new SentenceSentimentWorker(limit, skip);

 Thread thread = new Thread(worker, "Thread-" + i);

 threadList.add(thread);

 }

 for (Thread t : threadList) {

 t.start();

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

54

}

A2. Tuple Generation

public class TupleGenerator {

 public static void main(String[] args) {

 String host = "";

 int port = 27017;

 int skip = 0;

 TupleGenerator tg = new TupleGenerator();

 MongoClient mongoClient = new MongoClient(host, port);

 MongoDatabase database = mongoClient.getDatabase("yelp_reviews");

 MongoCollection<Document> sentimentVectors =

database.getCollection("sentimentVectors");

 MongoCollection<Document> sentimentTuples =

database.getCollection("sentimentTuples");

 MongoCursor<Document> cursor = sentimentVectors.find().sort(ascending("_id"))

 .skip(skip).iterator();

 try {

 while (cursor.hasNext()) {

 Document sentimentVectorDoc = cursor.next();

 String userId = sentimentVectorDoc.getString("user_id");

 String reviewId = sentimentVectorDoc.getString("review_id");

 String sentimentVector =

sentimentVectorDoc.getString("sentimentVector");

 // check if length < 4 before generating, if so just insert sentiment

vector as tuple

 if (sentimentVector.length() < 4) {

 Document tupleDoc = new Document().append("user_id", userId)

 .append("review_id", reviewId)

 .append("sentimentTuple", sentimentVector);

 sentimentTuples.insertOne(tupleDoc);

 } else {

 List<Document> tupleDocList = new ArrayList<Document>();

 for (String tuple : tg.generateTuple(sentimentVector)) {

 Document doc = new Document().append("user_id", userId)

 .append("review_id", reviewId)

 .append("sentimentTuple", tuple);

 tupleDocList.add(doc);

 }

 sentimentTuples.insertMany(tupleDocList);

 }

 }

 } finally {

 cursor.close();

 mongoClient.close();

 }

 }

 /*

 Generate all tuples of length 3 or larger.

 */

 public List<String> generateTuple(String sVector) {

 List<String> sentimentTuples = new ArrayList<String>();

 int length = sVector.length();

 int k = length - 1;

 while (k > 2) {

 for (int i = 0; i + k <= length; i++) {

 String tuple = sVector.substring(i, i+k);

55

 sentimentTuples.add(tuple);

 }

 k--;

 }

 return sentimentTuples;

 }

}

A3. Computing Results

object Results {

 def main(args: Array[String]): Unit = {

 Logger.getLogger("org").setLevel(Level.ERROR)

 val sparkSession = SparkSession.builder()

 .master("local[*]")

 .config("spark.mongodb.input.uri",

"mongodb://localhost:27017/yelp_reviews.sentimentTuples")

 .config("spark.mongodb.output.uri",

"mongodb://localhost:27017/yelp_reviews.userAbnormalityScore")

 .getOrCreate()

 import sparkSession.sqlContext.implicits._

 import org.apache.spark.sql.functions._

 val allTuples = MongoSpark.load(sparkSession)

 val userTupleStats = allTuples.groupBy('user_id, 'sentimentTuple)

 .agg(countDistinct('review_id).as("foundInNumReviews"),

count('sentimentTuple).as("sentimentTupleCount"),

 length('sentimentTuple).as("tupleLength"))

 val usersReadConfig = ReadConfig(Map("collection" -> "users"),

 Some(ReadConfig(sparkSession)))

 val users = MongoSpark.load(sparkSession, usersReadConfig)

 val userTupleExtendedStats = userTupleStats.join(users, Seq("user_id"))

 .drop('_id).withColumnRenamed("count", "totalReviews")

 val userTupleExtendedStatsWithFreq =

userTupleExtendedStats.withColumn("tupleFrequency",

 'foundInNumReviews.divide('totalReviews))

 val userTupleLengthStats = userTupleExtendedStatsWithFreq.groupBy('user_id,

'tupleLength)

 .agg(sum('sentimentTupleCount), countDistinct('sentimentTuple))

 .withColumnRenamed("sum(sentimentTupleCount)", "totalTuplesOfLength")

 .withColumnRenamed("count(DISTINCT sentimentTuple)", "uniqueTuplesOfLength")

 val userTupleFullStats = userTupleExtendedStatsWithFreq.join(userTupleLengthStats,

 Seq("user_id", "tupleLength"))

 .withColumn("observedTupleLengthFreq",

'sentimentTupleCount.divide('totalTuplesOfLength))

 .withColumn("expectedTupleLenthFreq", lit(1).divide('uniqueTuplesOfLength))

 .withColumn("absDiffObsExpected",

abs('observedTupleLengthFreq.minus('expectedTupleLenthFreq)))

 .withColumn("abnormalityScore", pow('tupleFrequency,

2).multiply(pow('tupleLength, 2))

 .multiply(pow('absDiffObsExpected, 2)))

 val userAbnormalityScore =

userTupleFullStats.groupBy('user_id).agg(sum('abnormalityScore)

 .as("userAbnormalityScore")).sort(desc("userAbnormalityScore"))

 }

}

56

B1. Naïve Bayes Train

object NaiveBayesTrain {

 def main(args: Array[String]): Unit = {

 Logger.getLogger("org").setLevel(Level.ERROR)

 val spark = SparkSession.builder()

 .master("local[*]")

 .config("spark.mongodb.input.uri",

"mongodb://localhost:27017/yelp_reviews.review_lte50")

 .getOrCreate()

 import spark.sqlContext.implicits._

 val trainReviews = MongoSpark.load(spark)

 // Tokenize

 val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words")

 val regexTokenizer = new RegexTokenizer()

 .setInputCol("text")

 .setOutputCol("words")

 .setPattern("\\W")

 val reviewsWithWords = regexTokenizer.transform(trainReviews)

 // Remove Stop words

 // Custom or Default Stop Words

 //val stopWordsList = spark.sparkContext.textFile("stopwords.txt").collect()

 val stopWordRemover = new StopWordsRemover()

 .setInputCol("words")

 .setOutputCol("wordsFiltered")

 //.setStopWords(stopWordsList)

 val reviewsFiltered = stopWordRemover.transform(reviewsWithWords)

 // Train NB Model

 val hashingTF = new HashingTF()

 val labeledReviews = reviewsFiltered.select('stars, 'wordsFiltered).rdd.map {

 case Row(stars: Long, filteredWords: Seq[String]) =>

 // Start sentiment from 0

 LabeledPoint(stars - 1, hashingTF.transform(filteredWords))

 }

 labeledReviews.cache()

 val naiveBayesModel: NaiveBayesModel = NaiveBayes.train(labeledReviews, lambda =

1.0, modelType = "multinomial")

 naiveBayesModel.save(spark.sparkContext, "./NBModelLambda1")

 }

}

B2. Naïve Bayes Sentiment Analysis

object NaiveBayesPredict {

 def main(args: Array[String]): Unit = {

 Logger.getLogger("org").setLevel(Level.ERROR)

 val spark = SparkSession.builder()

 .master("local[*]")

 .config("spark.mongodb.input.uri",

"mongodb://localhost:27017/yelp_reviews.sentiment_results")

 .config("spark.mongodb.output.uri",

"mongodb://localhost:27017/yelp_reviews.nb_sentiment_results")

 .getOrCreate()

 import spark.sqlContext.implicits._

 val reviewSentences = MongoSpark.load(spark)

57

 val naiveBayesModel: NaiveBayesModel = NaiveBayesModel.load(spark.sparkContext,

"./NBModelLambda1")

 val regexTokenizer = new RegexTokenizer()

 .setInputCol("sentence")

 .setOutputCol("sentenceWords")

 .setPattern("\\W")

 val sentencesWords = regexTokenizer.transform(reviewSentences)

 // Remove Stop words

 val stopWordRemover = new StopWordsRemover()

 .setInputCol("sentenceWords")

 .setOutputCol("wordsFiltered")

 val reviewsFiltered = stopWordRemover.transform(sentencesWords)

 val hashingTF = new HashingTF()

 val NBSentimentResults = reviewsFiltered.select('review_id, 'user_id, 'sentence,

'wordsFiltered, 'position).map {

 case Row(reviewId: String, userId: String, sentence: String, filteredWords:

Seq[String], position: Int) =>

 val sentiment = naiveBayesModel.predict(hashingTF.transform(filteredWords))

 (reviewId, userId, sentence, filteredWords, position, sentiment.toInt)

 }.withColumnRenamed("_1", "review_id").withColumnRenamed("_2",

"user_id").withColumnRenamed("_3", "sentence")

 .withColumnRenamed("_4", "wordsFiltered").withColumnRenamed("_5",

"position").withColumnRenamed("_6", "sentiment")

 MongoSpark.save(NBSentimentResults)

 }

}

B3. Vectors and Tuples

public class NBVectorMaker {

 public static void main(String[] args) {

 String host = "localhost";

 int port = 27017;

 TupleGenerator tg = new TupleGenerator();

 MongoClient mongoClient = new MongoClient(host, port);

 MongoDatabase database = mongoClient.getDatabase("yelp_reviews");

 MongoCollection<Document> sentimentResults =

database.getCollection("nb_sentiment_results");

 MongoCollection<Document> sentimentVectors =

database.getCollection("nb_sentimentVectors");

 MongoCollection<Document> sentimentTuples =

database.getCollection("nb_sentimentTuples");

 MongoCursor<Document> cursor = sentimentResults.find()

 .sort(ascending("review_id", "position")).iterator();

 String sentimentVector = "Init";

 String currReviewId = "Init";

 String currUserId = "Init";

 try {

 while (cursor.hasNext()) {

 Document review = cursor.next();

 String userId = review.getString("user_id");

 String reviewId = review.getString("review_id");

 String sentiment = String.valueOf(review.getInteger("sentiment"));

 // Still the same review

58

 if (reviewId.equals(currReviewId)) {

 sentimentVector += sentiment;

 } else {

 // New Review - Save sentiment vector

 Document vectorDoc = new Document().append("review_id",

currReviewId)

 .append("user_id", currUserId)

 .append("sentimentVector", sentimentVector);

 sentimentVectors.insertOne(vectorDoc);

 // check if length < 4 before generating, if so just insert

sentiment vector as tuple

 if (sentimentVector.length() < 4) {

 Document tupleDoc = new Document().append("user_id",

currUserId)

 .append("review_id", currReviewId)

 .append("sentimentTuple", sentimentVector);

 sentimentTuples.insertOne(tupleDoc);

 } else {

 List<Document> tupleDocList = new ArrayList<Document>();

 for (String tuple : tg.generateTuple(sentimentVector)) {

 Document doc = new Document().append("user_id",

currUserId)

 .append("review_id", currReviewId)

 .append("sentimentTuple", tuple);

 tupleDocList.add(doc);

 }

 sentimentTuples.insertMany(tupleDocList);

 }

 // Reset

 currReviewId = reviewId;

 currUserId = userId;

 sentimentVector = "";

 sentimentVector += sentiment;

 }

 }

 } finally {

 cursor.close();

 mongoClient.close();

 }

 }

}

